by J. Blum, CDSC, Thailand
Two circular parallel metal plates with the radius r = 24 cm, are arranged in a distance d = 1.2 mm as a plate capacitor. The applied voltage is 240 V.
capacitance: $C=\epsilon \frac{A}{d}=1.32~nF$
charge: $Q_C=VC=316.8~nC$
Electric field strength: $E=\frac{E}{d}=200~000~V/m$
Energy: $E_{el}=\frac{1}{2}CV^2=38.02\cdot 10^{-6}J$
Knut has bought capacitors by Conrad electronics with value 10 µF/25 V.
In parallel: $C=6 \cdot 10~\mu F= 60~\mu F$, $V=25~V$
In series: $V=6 \cdot 25~V=150~V$, $C=1/(1/C_1+~...~+1/C_6)$$=1,67~\mu F$
Respectively 2 in series ($50~V$ and $5~\mu F$)and then 4 times parallel.
Beside a high capacity, electrolytic capacitors have a high maximum voltage.
A capacitor with 47 µF is connected to 24 V with a series resistance of 2,1 kΩ.
time conatant: $\tau =R\cdot C = 98,7~ms$
charging time: $5\tau =493,5~ms$
time: $2\tau=197,4~ms$
capacitors voltage: $V_C(1,5\tau)=V_0(1-e^{-t/\tau})=$$24~V(1-e^{-1,5\tau /\tau})=18,64~V$
questioned voltage: $V_C=90\% \cdot V_0=21,6~V$
$V_0(1-e^{-t/\tau})=V_C~~|:V_0$
$1-e^{-t/\tau}=V_C/V_0~~|-1 ~|\cdot(-1)$
$e^{-t/\tau}=1-V_C/V_0~~|ln(...)$
$-t/\tau=ln(1-V_C/V_0)~~|\cdot (-\tau)$
$t=-\tau\cdot ln(1-V_C/V_0)~~|\text{insert}$
$t=227~ms$
inrush current: $I_0=V_0/R=24~V/2,1~k\Omega=$$11,42~mA$
questioned current: $I_C=30\% \cdot I_0=3,426~mA$
$V_0/R\cdot e^{-t/\tau})=I_C~~|\cdot (-R/V_0)$
$e^{-t/\tau})=I_C\cdot R/V_0~~||ln(...)$
$-t/\tau=ln(I_C\cdot R/V_0)~~|\cdot (-\tau)$
$t=-\tau\cdot ln(I_C\cdot R/V_0)~~|\text{insert}$
$t=118,91~ms$
diagram:
idea from students
A 1 kΩ load is supplied with 325 V. After power failure a capacitor shall supply the circuit for 5 s with at least 63,3 % the input voltage.
Which capacity is necessary?
Calculate the voltage: $\frac{100~\%}{325~V}=\frac{63,3~\%}{V_C}$, $V_C=205,725~V$
Calculate the time constant: $\tau=\frac{t}{-ln(V_C/V_0)}=10,934~s$
Calculate the capacitance: $C=\tau /R=10,934~mF$
Alternatively estimation out of diagram: $0,633 ~\hat{=}~ 0,5~\tau$
A RC-circuit is supplied with the following control voltage. Plot the signal for voltage and current,